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ABSTRACT 

Voice conversion can benefit from WaveNet vocoder with 

improvement in converted speech’s naturalness and quality. 

However, nowadays approaches segregate the training of 

conversion module and WaveNet vocoder towards different 

optimization objectives, which might lead to the difficulty in 

model tuning and coordination. In this paper, we propose a 

compact framework to unify the conversion and the vocoder 

parts. Multi-head self-attention structure and bidirectional 

long short-term memory (BLSTM) recurrent neural network 

(RNN) are employed to encode speaker independent phonetic 

posteriorgrams (PPGs) into an intermediate representation 

which is used as the condition input of WaveNet to generate 

target speaker’s waveform. In this way, we unify the 

conversion and vocoder parts into a compact system in which 

all parameters can be tuned simultaneously for global 

optimization. We compared the proposed method with the 

baseline system that consists of separately trained conversion 

module and WaveNet vocoder. Subjective evaluations show 

that the proposed method can achieve better results in both 

naturalness and speaker similarity. 

 

Index Terms— Voice conversion, WaveNet, phonetic 

posteriorgrams(PPGs), self-attention, BLSTM 

1. INTRODUCTION 

Voice conversion (VC) is a technique to modify the speech 

from source speaker to make it sound like being uttered by 

target speaker while keeping the linguistic content unchanged. 

Traditional VC methods mainly consist of two key 

components: conversion function and vocoder [1]. The 

conversion function converts features extracted from the 
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source speaker’s speech into acoustic features of the target 

speaker. Then the vocoder uses these converted features to 

synthesize speech waveform of the target speaker. However, 

traditional conversion functions rely heavily on parallel 

corpus [2-4] and time-alignment. Conventional vocoders [5,6] 

are of low quality and not robust. These restrictions greatly 

hindered the performance of traditional VC methods. Many 

approaches have been proposed to overcome these limitations 

[7-9]. Two of the most remarkable works are the introducing 

of PPGs to facilitate non-parallel VC [10] and the utilization 

of WaveNet vocoder [11] to improve the speech quality 

[12,13]. 

Motivated by the above progress, the N10 system [14] in 

the Voice Conversion Challenge 2018 (VCC 2018) [15] has 

proposed to use both PPGs-based non-parallel data 

conversion function and WaveNet vocoder for VC and 

achieved both high naturalness and high speaker similarity of 

the converted speech. However, in N10 system, the 

conversion part and the WaveNet vocoder are separately 

trained and tuned, which may hinder the global optimization 

of the whole system. Moreover, the method utilizes 

STRAIGHT [6] spectral features as the intermediate features 

bridging the two parts. Predicting the waveform from such 

human defined features may not achieve the best performance. 

Furthermore, training and tuning of two systems are usually 

more time-consuming and laborious than a single system. 

In this paper, we propose a method to unify the 

conversion function and the vocoder. We first extract speaker 

independent linguistic features from the source speaker’s 

speech. Then instead of converting the source speaker’s 

linguistic features into the target speaker’s acoustic features, 

we employ a combination of multi-head self-attention 

structure [16] and BLSTM [17] structure to encode the 
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linguistic features and F0. The encoded features are up-

sampled into the desired resolution and fed into WaveNet to 

generate the target speaker's waveform. Consequently, our 

system doesn’t need intermediate acoustic features. Since the 

training data can be extracted only from the target speaker’s 

corpus, we don’t need a parallel corpus and to do time-

alignment for the data. We train only one system in which all 

the parameters are tuned simultaneously to optimize the 

generation of the target speaker’s waveform. Experiments 

show that the proposed method can achieve better 

performance than the baseline system in both speech 

naturalness and speaker similarity. 

The rest of this paper is organized as follows. Section 2 

describes a state-of-the-art nonparallel VC system as our 

baseline system. Section 3 describes our proposed method. 

Experimental setup and results are presented in section 4. 

Section 5 concludes this paper. 

2. BASELINE SYSTEM 

Our baseline system is mainly based on the VC system using 

PPGs [10]. However, instead of using STRAIGHT vocoder 

as in [10], we train a WaveNet vocoder conditioned on 

acoustic features to generate the target speaker’s speech 

waveform. The baseline system’s framework is similar to that 

of the N10 system in the VCC 2018, however, we didn’t use 

the adaptation method to train the WaveNet vocoder as they 

did [14]. The main architecture of the baseline system is 

depicted in Fig.1. 

2.1. Phonetic posteriorgrams (PPGs) 

PPGs are generally considered as speaker independent 

features containing linguistic information. A PPG is a time 

sequence representing the posterior probability of each 

senone for each time frame of the utterance. The number of 

frames each senone lasts reveals the duration information of 

the senone. Though we use a speaker-independent automatic 

speech recognition (SI-ASR) system to extract PPGs from an 

utterance, we don't convert PPGs into the corresponding 

phoneme or word sequences for two reasons: 1) PPGs can 

capture the composition of different senones in a certain 

sound and its subtle temporal changes, which can be utilized 

to obtain more accurate estimates of acoustic parameters. 2) 

The duration information may be damaged due to mapping 

different posterior probability distributions into one phoneme. 

2.2. Framework overview 

The training of the baseline system involves three stages. In 

training stage 1, the SI-ASR system is trained on a separate 

ASR corpus to serve as a PPGs extractor. In training stage 2, 

a BLSTM conversion function is trained to convert PPGs into 

Mel-cepstral coefficients (MCEPs) frame by frame. In 

training stage 3, the WaveNet vocoder conditioned on 

MCEPs and logarithm F0 is trained. The SI-ASR system 

trained in stage 1 is used in stage 2 to obtain the PPGs 

representation of the speech. The up-sample layer before the 

WaveNet vocoder up-sample the condition input to match the 

speech waveform’s time resolution. While the WaveNet 

vocoder in Fig.1 is trained on the ground truth MCEPs, it can 

also be trained on the MCEPs predicted by the trained 

BLSTM conversion function; however, in the latter case, the 

trained WaveNet vocoder may generate speech with more 

serious quality degradation according to our experiments. 

During conversion, the source speaker’s speech is first 

transformed into its PPGs representation via the SI-ASR 

model. The trained BLSTM conversion function converts the 

PPGs into the MCEPs which is concatenated with the 

logarithm F0 to form the local condition input to WaveNet 

vocoder. The WaveNet vocoder finally generates the 

converted speech waveform. The logarithm F0 of the source 

speaker is transformed into that of the target speaker simply 

by a linear transformation. 

2.3. Limitations 

Despite the good performance of the baseline system, it still 

has the following limitations: 1) The BLSTM conversion 

function and the WaveNet vocoder are trained separately. 

Hence parameters of the two parts are not tuned jointly to 

optimize the generation of the waveform. Besides, errors 

from each part may compound. 2) The utilization of MCEPs 

as intermediate features may not be consistent with the whole 

system’s optimization objective. 3) It is time-consuming to 

train and tune two separate neural network architectures. 

3. PROPOSED METHOD 

To overcome the above limitations, we propose a modified 

conditional WaveNet based on self-attention and BLSTM to 

unify the conversion part and the vocoder part for VC. 

3.1. Framework overview 

As shown in Fig.2, the training process of the proposed 

method involves two stages. The training stage 1 is the same 

as in the baseline system. In training stage 2, the network 

being trained is a unification of a conversion system and a 

vocoder system. There is no intermediate process of mapping 
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Fig.1: The framework of the baseline system. 
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PPGs into acoustic features. We directly train a WaveNet 

synthesizer conditioned on PPGs and logarithm F0. We call 

it a WaveNet synthesizer because the WaveNet architecture 

is conditioned mainly on linguistic features (i.e. PPGs). 

The conversion process is also simpler compared to that 

in the baseline system. For an arbitrary source speaker’s 

speech, we extract its PPGs representation through the trained 

SI-ASR model. The PPGs and the linear-transformed 

logarithm F0 are fed into the condition network, and then the 

WaveNet synthesizer generates the target speaker’s speech 

waveform according to the condition input. 

3.2. Condition network 

In speech synthesis systems, the contextual information of 

linguistic features is important for producing natural and 

high-quality speech. The main reason is that the same 

phoneme or syllable may sound differently in different 

contexts due to the co-articulation effects. Traditional 

statistical parametric speech synthesis system would use a 

series of human-defined rules to model the contextual 

information of linguistic features [18]. For example, in the 

phoneme level, the preceding and succeeding two phonemes 

are added to the contexts; while in the phrase level, the 

position of the current phrase in major phrases is taken into 

consideration. Recent end-to-end Text-to-Speech (TTS) 

system [19] employed a bidirectional RNN architecture to 

model the linguistic features’ contextual information. While 

PPGs can represent fine details of speech sounds and their 

subtle changes, they are bad at capturing coarse-grained 

information such as phrase level contexts. We need to explore 

an approach to take advantage of the contextual information 

of PPGs to improve their representation ability. 

In the proposed method, we modify the up-sample layer 

in the baseline system to a more sophisticated network as 

shown in Fig.3. We call it condition network since it is a 

preprocessing of the WaveNet synthesizer’s condition input. 

The condition network consists of two layer blocks, each 

includes a self-attention layer and a BLSTM layer. Self-

attention and BLSTM are both state-of-the-art approaches for 

sequence modeling. However, self-attention and BLSTM 

process a sequence in quite different ways. Consider the 

procedure of computing output at a certain time step from a 

sequence, self-attention would directly attend to all elements 

in the sequence to compute a set of attention weights and 

obtain the output as a weighted sum of all these input 

elements [16]. While BLSTM would take in only the current 

input element and context information vectors from both 

directions to compute the output. We believe that the self-

attention structure can easily capture the global context 

information far from the current linguistic frame while the 

BLSTM structure is more capable of acquiring the local 

context information near the current linguistic frame. The 

combination of the two structures can encode the PPGs into 

effective representations with sufficient context information 

to synthesize speech. We add a residual connection between 

the self-attention layer’s input and the output as well as a 

layer normalization [20] operation after the self-attention 

layer to accelerate the training process. Experiments show 

that the modified conditional WaveNet can improve the 

converted speech’s naturalness and target speaker similarity. 

4. EXPERIMENTS 

4.1. Experimental setup 

To evaluate the proposed method and the baseline system, we 

used datasets of four American English speakers from the 

CMU ARCTIC [21]: two males (RMS, BDL) and two 

females (SLT, CLB). Among them, RMS and SLT are used 

as target speakers, BDL and CLB are used as source speakers, 

to test different VC system’s performance. 

All the acoustic features of speech are extracted with 25-

ms window length and 5-ms window shift. The SI-ASR 

system for PPGs extraction is implemented using the Kaldi 

speech recognition toolkit [22] and trained on TIMIT corpus 

[23]. The PPG is extracted as a 128-dimensional data 

sequence representing probabilities of each 128 senones on 

all time frames of an utterance. 

For the baseline system, the BLSTM conversion function 

consists of two layers, each layer is composed of a forward 

LSTM-RNN and a backward LSTM-RNN with their outputs 

concatenated. The numbers of hidden units of these LSTM-

RNNs are all 64. The WaveNet architecture has two dilated 

blocks, each consists of 10 layers with the dilation rate from 

1 to 512. The numbers of residual channels and skip channels 

are 128 and 256, respectively. The waveform is  -law 

encoded into 256-dimension. The WaveNet architecture is 

the same for both the baseline system and the proposed 

method. The up-sample layer in both systems is just an 

operation in which different frames of the input are repeated 

multiple times to match the resolution of the target waveform. 
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Fig.2: The framework of the proposed method. 

Self-attention

PPGs+Log F0

Layer 
Normalization

BLSTM

Self-attention

Layer 
Normalization

BLSTM
Up-sample 

layer
WaveNet 

Synthesizer

Condition 

Network

 
Fig.3: The condition network in the proposed method. 
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For the condition network in the proposed method, the 

numbers of hidden units in the two self-attention structures 

are 130 and 128, respectively, and numbers of heads are 13 

and 8, respectively. The numbers of hidden units of the 

LSTM-RNNs in two BLSTM layers are both 128. 

Four systems were evaluated in the experiments. In 

addition to the baseline system (Baseline) and the proposed 

system (Proposed), we also conducted two ablation studies 

on the proposed method to evaluate the effectiveness of its 

network structure. Ablation test system 1 (Ablation 1): which 

comes from the proposed system but without condition 

network, which means the WaveNet synthesizer is directly 

conditioned on the raw PPGs and the logarithm F0. Ablation 

test system 2 (Ablation 2): which comes from the proposed 

system but without self-attention architecture, i.e. the 

condition network only consists of a two-layer BLSTM. 

4.2. Subjective evaluation 

We build VC systems for two target speakers: a male speaker 

(RMS) and a female speaker (SLT). Subjective listening tests 

for four types of conversion are conducted: male-to-female 

(BDL to SLT), female-to-female (CLB to SLT), male-to-

male (BDL to RMS) and female-to-male (CLB to RMS). The 

naturalness and speaker similarity are evaluated perceptually 

on the four types of conversion pairs.  

Followed voice conversion challenge 2016 [24], we 

conducted Mean Opinion Score (MOS) listening test for 

naturalness and use Same/Different paradigm to measure the 

speaker similarity. In naturalness MOS listening tests, 

subjects were asked to evaluate the converted speech samples 

on a scale from 1 (completely unnatural) to 5 (completely 

natural). In similarity evaluation tests, the scale for judging is: 

“Same, absolutely sure”, “Same, not sure”, “Different, not 

sure” and “Different, absolutely Sure”. 

Four sentences were converted by each of the 4 systems 

in 4 types of conversion case. Hence, 64 utterances in total 

were evaluated1. 12 native Chinese speakers without listening 

impairment participated in the evaluation tests. Each 

utterance is presented to at least 6 subjects. 

                                                 
1 Samples: https://light1726.github.io/voice_conversion_demo/ 

4.3. Experimental results 

The results of the naturalness MOS and the similarity 

evaluation tests are depicted on Fig.4 and Fig.5 respectively. 

As can be seen, the proposed method outperforms the 

baseline system in both speech naturalness and speaker 

similarity, indicating the effectiveness of the proposed 

compact framework. Without the condition network, the 

ablation test system 1 performs badly in both naturalness and 

speaker similarity evaluations. We owe the great performance 

improvement from the ablation test system 1 to the proposed 

method to the condition network that effectively models the 

contextual information of PPGs. The ablation test system 2 

also surpass the ablation test system 1 due to the utilization 

of BLSTM to model the context information. Although 

ablation test system 2 achieves comparable performance in 

both naturalness and speaker similarity when compared with 

the baseline system, its performance is still worse than that of 

the proposed method, which indicates that the using of multi-

head self-attention can make up for the BLSTM in modeling 

the global context. Thanks to the condition network, all 

phonemes can be synthesized accurately. 

5. CONCLUSION 

In this paper, we propose a compact framework for voice 

conversion based on WaveNet conditioned on PPGs. The 

proposed method unifies the feature conversion function and 

the WaveNet vocoder. We propose a condition network based 

on self-attention and BLSTM to encode the PPGs into an 

effective condition input to the WaveNet. Subjective 

evaluations show that the proposed method outperforms 

traditional two-step VC methods and the condition network 

is effective for our VC methods. 
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Fig.4: Naturalness results for 4 systems and 4 types of 

conversion tasks. 
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Fig.5: Similarity results of target speaker for 4 systems and 4 

types of conversion tasks. 
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